Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica).

Identifieur interne : 000325 ( Main/Exploration ); précédent : 000324; suivant : 000326

Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica).

Auteurs : Zhiyang Zhang [République populaire de Chine] ; Yang Chen [République populaire de Chine] ; Junlin Zhang [République populaire de Chine] ; Xinzhi Ma [République populaire de Chine] ; Yiling Li [République populaire de Chine] ; Mengmeng Li [République populaire de Chine] ; Deyan Wang [République populaire de Chine] ; Minghui Kang [République populaire de Chine] ; Haolin Wu [République populaire de Chine] ; Yongzhi Yang [République populaire de Chine] ; Matthew S. Olson [États-Unis] ; Stephen P. Difazio [États-Unis] ; Dongshi Wan [République populaire de Chine] ; Jianquan Liu [République populaire de Chine] ; Tao Ma [République populaire de Chine]

Source :

RBID : pubmed:32034885

Abstract

Populus euphratica is well adapted to extreme desert environments and is an important model species for elucidating the mechanisms of abiotic stress resistance in trees. The current assembly of P. euphratica genome is highly fragmented with many gaps and errors, thereby impeding downstream applications. Here, we report an improved chromosome-level reference genome of P. euphratica (v2.0) using single-molecule sequencing and chromosome conformation capture (Hi-C) technologies. Relative to the previous reference genome, our assembly represents a nearly 60-fold improvement in contiguity, with a scaffold N50 size of 28.59 Mb. Using this genome, we have found that extensive expansion of Gypsy elements in P. euphratica led to its rapid increase in genome size compared to any other Salicaceae species studied to date, and potentially contributed to adaptive divergence driven by insertions near genes involved in stress tolerance. We also detected a wide range of unique structural rearrangements in P. euphratica, including 2,549 translocations, 454 inversions, 121 tandem and 14 segmental duplications. Several key genes likely to be involved in tolerance to abiotic stress were identified within these regions. This high-quality genome represents a valuable resource for poplar breeding and genetic improvement in the future, as well as comparative genomic analysis with other Salicaceae species.

DOI: 10.1111/1755-0998.13142
PubMed: 32034885


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica).</title>
<author>
<name sortKey="Zhang, Zhiyang" sort="Zhang, Zhiyang" uniqKey="Zhang Z" first="Zhiyang" last="Zhang">Zhiyang Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yang" sort="Chen, Yang" uniqKey="Chen Y" first="Yang" last="Chen">Yang Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Junlin" sort="Zhang, Junlin" uniqKey="Zhang J" first="Junlin" last="Zhang">Junlin Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, Xinzhi" sort="Ma, Xinzhi" uniqKey="Ma X" first="Xinzhi" last="Ma">Xinzhi Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Yiling" sort="Li, Yiling" uniqKey="Li Y" first="Yiling" last="Li">Yiling Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Mengmeng" sort="Li, Mengmeng" uniqKey="Li M" first="Mengmeng" last="Li">Mengmeng Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Deyan" sort="Wang, Deyan" uniqKey="Wang D" first="Deyan" last="Wang">Deyan Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kang, Minghui" sort="Kang, Minghui" uniqKey="Kang M" first="Minghui" last="Kang">Minghui Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Haolin" sort="Wu, Haolin" uniqKey="Wu H" first="Haolin" last="Wu">Haolin Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yongzhi" sort="Yang, Yongzhi" uniqKey="Yang Y" first="Yongzhi" last="Yang">Yongzhi Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Olson, Matthew S" sort="Olson, Matthew S" uniqKey="Olson M" first="Matthew S" last="Olson">Matthew S. Olson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Texas Tech University, Lubbock, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wan, Dongshi" sort="Wan, Dongshi" uniqKey="Wan D" first="Dongshi" last="Wan">Dongshi Wan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, Tao" sort="Ma, Tao" uniqKey="Ma T" first="Tao" last="Ma">Tao Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32034885</idno>
<idno type="pmid">32034885</idno>
<idno type="doi">10.1111/1755-0998.13142</idno>
<idno type="wicri:Area/Main/Corpus">000478</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000478</idno>
<idno type="wicri:Area/Main/Curation">000478</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000478</idno>
<idno type="wicri:Area/Main/Exploration">000478</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica).</title>
<author>
<name sortKey="Zhang, Zhiyang" sort="Zhang, Zhiyang" uniqKey="Zhang Z" first="Zhiyang" last="Zhang">Zhiyang Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Yang" sort="Chen, Yang" uniqKey="Chen Y" first="Yang" last="Chen">Yang Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Junlin" sort="Zhang, Junlin" uniqKey="Zhang J" first="Junlin" last="Zhang">Junlin Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, Xinzhi" sort="Ma, Xinzhi" uniqKey="Ma X" first="Xinzhi" last="Ma">Xinzhi Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Yiling" sort="Li, Yiling" uniqKey="Li Y" first="Yiling" last="Li">Yiling Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Mengmeng" sort="Li, Mengmeng" uniqKey="Li M" first="Mengmeng" last="Li">Mengmeng Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Deyan" sort="Wang, Deyan" uniqKey="Wang D" first="Deyan" last="Wang">Deyan Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kang, Minghui" sort="Kang, Minghui" uniqKey="Kang M" first="Minghui" last="Kang">Minghui Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, Haolin" sort="Wu, Haolin" uniqKey="Wu H" first="Haolin" last="Wu">Haolin Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Yongzhi" sort="Yang, Yongzhi" uniqKey="Yang Y" first="Yongzhi" last="Yang">Yongzhi Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Olson, Matthew S" sort="Olson, Matthew S" uniqKey="Olson M" first="Matthew S" last="Olson">Matthew S. Olson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Texas Tech University, Lubbock, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, Morgantown, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wan, Dongshi" sort="Wan, Dongshi" uniqKey="Wan D" first="Dongshi" last="Wan">Dongshi Wan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou</wicri:regionArea>
<wicri:noRegion>Lanzhou</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, Tao" sort="Ma, Tao" uniqKey="Ma T" first="Tao" last="Ma">Tao Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu</wicri:regionArea>
<wicri:noRegion>Chengdu</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular ecology resources</title>
<idno type="eISSN">1755-0998</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Populus euphratica is well adapted to extreme desert environments and is an important model species for elucidating the mechanisms of abiotic stress resistance in trees. The current assembly of P. euphratica genome is highly fragmented with many gaps and errors, thereby impeding downstream applications. Here, we report an improved chromosome-level reference genome of P. euphratica (v2.0) using single-molecule sequencing and chromosome conformation capture (Hi-C) technologies. Relative to the previous reference genome, our assembly represents a nearly 60-fold improvement in contiguity, with a scaffold N50 size of 28.59 Mb. Using this genome, we have found that extensive expansion of Gypsy elements in P. euphratica led to its rapid increase in genome size compared to any other Salicaceae species studied to date, and potentially contributed to adaptive divergence driven by insertions near genes involved in stress tolerance. We also detected a wide range of unique structural rearrangements in P. euphratica, including 2,549 translocations, 454 inversions, 121 tandem and 14 segmental duplications. Several key genes likely to be involved in tolerance to abiotic stress were identified within these regions. This high-quality genome represents a valuable resource for poplar breeding and genetic improvement in the future, as well as comparative genomic analysis with other Salicaceae species.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32034885</PMID>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1755-0998</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Molecular ecology resources</Title>
<ISOAbbreviation>Mol Ecol Resour</ISOAbbreviation>
</Journal>
<ArticleTitle>Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica).</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1755-0998.13142</ELocationID>
<Abstract>
<AbstractText>Populus euphratica is well adapted to extreme desert environments and is an important model species for elucidating the mechanisms of abiotic stress resistance in trees. The current assembly of P. euphratica genome is highly fragmented with many gaps and errors, thereby impeding downstream applications. Here, we report an improved chromosome-level reference genome of P. euphratica (v2.0) using single-molecule sequencing and chromosome conformation capture (Hi-C) technologies. Relative to the previous reference genome, our assembly represents a nearly 60-fold improvement in contiguity, with a scaffold N50 size of 28.59 Mb. Using this genome, we have found that extensive expansion of Gypsy elements in P. euphratica led to its rapid increase in genome size compared to any other Salicaceae species studied to date, and potentially contributed to adaptive divergence driven by insertions near genes involved in stress tolerance. We also detected a wide range of unique structural rearrangements in P. euphratica, including 2,549 translocations, 454 inversions, 121 tandem and 14 segmental duplications. Several key genes likely to be involved in tolerance to abiotic stress were identified within these regions. This high-quality genome represents a valuable resource for poplar breeding and genetic improvement in the future, as well as comparative genomic analysis with other Salicaceae species.</AbstractText>
<CopyrightInformation>© 2020 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Zhiyang</ForeName>
<Initials>Z</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9466-9439</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Junlin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Xinzhi</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yiling</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Mengmeng</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Deyan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kang</LastName>
<ForeName>Minghui</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Haolin</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Yongzhi</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6912-6718</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Olson</LastName>
<ForeName>Matthew S</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>DiFazio</LastName>
<ForeName>Stephen P</ForeName>
<Initials>SP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, West Virginia University, Morgantown, WV, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wan</LastName>
<ForeName>Dongshi</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jianquan</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-4237-7418</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7094-6868</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>SRR7495379</AccessionNumber>
<AccessionNumber>SRR7495380</AccessionNumber>
<AccessionNumber>SRR7495381</AccessionNumber>
<AccessionNumber>PRJCA001471</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2016YFD0600101</GrantID>
<Agency>National Key Research and Development Program of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2012CB114504</GrantID>
<Agency>National Key Project for Basic Research</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>2018CDDY-S02-SCU</GrantID>
<Agency>Fundamental Research Funds for the Central Universities</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>SCU2019D013</GrantID>
<Agency>Fundamental Research Funds for the Central Universities</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31500502</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31561123001</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>31922061</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>41871044</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Ecol Resour</MedlineTA>
<NlmUniqueID>101465604</NlmUniqueID>
<ISSNLinking>1755-098X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus euphratica </Keyword>
<Keyword MajorTopicYN="N">environmental adaptation</Keyword>
<Keyword MajorTopicYN="N">genome assembly</Keyword>
<Keyword MajorTopicYN="N">repeat expansion</Keyword>
<Keyword MajorTopicYN="N">structural variation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32034885</ArticleId>
<ArticleId IdType="doi">10.1111/1755-0998.13142</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Adam, R., Harold, P., Cole, T., & Lior, P. (2011). Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics, 27(17), 2325-2329. https://doi.org/10.1093/bioinformatics/btr355</Citation>
</Reference>
<Reference>
<Citation>Alexandre, L., Vardges, T. H., Chernoff, Y. O., & Mark, B. (2005). Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Research, 33(20), 6494-6506. https://doi.org/10.1093/nar/gki937</Citation>
</Reference>
<Reference>
<Citation>Baidouri, M. E., & Panaud, O. (2013). Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution. Genome Biology and Evolution, 5(5), 954-965. https://doi.org/10.1093/gbe/evt025</Citation>
</Reference>
<Reference>
<Citation>Bairoch, A., & Apweiler, R. (2000). The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research, 28(1), 45-48. https://doi.org/10.1093/nar/28.1.45</Citation>
</Reference>
<Reference>
<Citation>Ben Othman, A., Ellouzi, H., Planchais, S., De Vos, D., Faiyue, B., Carol, P., … Savouré, A. (2017). Phospholipases dζ1 and dζ2 have distinct roles in growth and antioxidant systems in Arabidopsis thaliana responding to salt stress. Planta, 246(4), 721-735. https://doi.org/10.1007/s00425-017-2728-2</Citation>
</Reference>
<Reference>
<Citation>BIG Data Center Members (2019). Database resources of the BIG Data Center in 2019. Nucleic Acids Research, 48(D1), D8-D14. https://doi.org/10.1093/nar/gky993</Citation>
</Reference>
<Reference>
<Citation>Birney, E., Clamp, M., & Durbin, R. (2004). GeneWise and genomewise. Genome Research, 14(5), 988-995. https://doi.org/10.1101/gr.1865504</Citation>
</Reference>
<Reference>
<Citation>Bradshaw, H., Ceulemans, R., Davis, J., & Stettler, R. (2000). Emerging model systems in plant biology: Poplar (Populus) as a model forest tree. Journal of Plant Growth Regulation, 19(3), 306-313. https://doi.org/10.1007/s003440000030</Citation>
</Reference>
<Reference>
<Citation>Burton, J. N., Andrew, A., Patwardhan, R. P., Ruolan, Q., Kitzman, J. O., & Shendure, J. (2013). Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nature Biotechnology, 31(12), 1119-1125. https://doi.org/10.1038/nbt.2727</Citation>
</Reference>
<Reference>
<Citation>Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 421. https://doi.org/10.1186/1471-2105-10-421</Citation>
</Reference>
<Reference>
<Citation>Chen, J. H., Tian, Q. Q., Pang, T., Jiang, L. B., Wu, R. L., Xia, X. L., & Yin, W. L. (2014). Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica. BMC Genomics, 15(1), 326. https://doi.org/10.1186/1471-2164-15-326</Citation>
</Reference>
<Reference>
<Citation>Chen, N. S. (2004). Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics, 5(1), 4-10.</Citation>
</Reference>
<Reference>
<Citation>Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C., … Korlach, J. (2013). Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods, 10(6), 563-569. https://doi.org/10.1038/nmeth.2474</Citation>
</Reference>
<Reference>
<Citation>Chin, C.-S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A., … Schatz, M. C. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods, 13(12), 1050-1054. https://doi.org/10.1038/nmeth.4035</Citation>
</Reference>
<Reference>
<Citation>Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). blast2go: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. https://doi.org/10.1093/bioinformatics/bti610</Citation>
</Reference>
<Reference>
<Citation>Dai, X., Hu, Q., Cai, Q., Feng, K., Ye, N., Tuskan, G. A., … Yin, T. (2014). The willow genome and divergent evolution from poplar after the common genome duplication. Cell Research, 24(10), 1274-1277. https://doi.org/10.1038/cr.2014.83</Citation>
</Reference>
<Reference>
<Citation>Davenport, R. J., MuñozMayor, A., Jha, D., Essah, P. A., Rus, A., & Tester, M. (2010). The Na+ transporter AtHKT1; 1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell and Environment, 30(4), 497-507.</Citation>
</Reference>
<Reference>
<Citation>DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., … Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491-498. https://doi.org/10.1038/ng.806</Citation>
</Reference>
<Reference>
<Citation>Dhar, R., Seethy, A., Pethusamy, K., Singh, S., Rohil, V., Purkayastha, K., … Karmakar, S. (2019). De novo assembly of the Indian blue peacock (Pavo cristatus) genome using Oxford Nanopore technology and Illumina sequencing. GigaScience, 8(5), giz038. https://doi.org/10.1093/gigascience/giz038</Citation>
</Reference>
<Reference>
<Citation>Dickmann, D. I., Kuzovkina, J., Isebrands, J. G., & Richardson, J. (2014). Poplars and willows of the world, with emphasis on silviculturally important species.In. In J. G. Isebrands, & J. Richardson (Eds.), Poplars & Willows Trees for Society & the environment (pp. 8-91). Wallingford, UK: CAB International.</Citation>
</Reference>
<Reference>
<Citation>Dou, L., He, K. K., Higaki, T., Wang, X., & Mao, T. (2018). Ethylene signaling modulates cortical microtubule reassembly in response to salt stress. Plant Physiology, 176(3), 2071-2081. https://doi.org/10.1104/pp.17.01124</Citation>
</Reference>
<Reference>
<Citation>Duan, H., Lu, X., Lian, C. L., An, Y., Xia, X. L., & Yin, W. L. (2016). Genome-wide analysis of microRNA responses to the phytohormone abscisic acid in Populus euphratica. Frontiers in Plant Science, 7, 1184. https://doi.org/10.3389/fpls.2016.01184</Citation>
</Reference>
<Reference>
<Citation>Eckenwalder, J. E. (1996). Systematics and evolution of Populus. In R. F. Stettler, J. P. E. Heilman, & T. M. Hinckley (Eds.), Biology of Populus and its implications for management and conservation, part 1. (pp. 7-32). Ottawa, ON: NRC Research Press.</Citation>
</Reference>
<Reference>
<Citation>Ellinghaus, D., Kurtz, S., & Willhoeft, U. (2008). LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics, 9(1), 18. https://doi.org/10.1186/1471-2105-9-18</Citation>
</Reference>
<Reference>
<Citation>Ellis, B., Jansson, S., Strauss, S. H., & Tuskan, G. A.(2010). Why and how Populus became a “model tree”. In S. Jansson, R. Bhalerao, & A. Groover (Eds.), Genetics and genomics of Populus (pp. 3-14). New York, NY: Springer.</Citation>
</Reference>
<Reference>
<Citation>Feng, X. J., Li, J. R., Qi, S. L., Lin, Q. F., Jin, J. B., & Hua, X. J. (2016). Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 113(51), E8335-E8343.</Citation>
</Reference>
<Reference>
<Citation>Ferreira, S., Hjernø, K., Larsen, M., Wingsle, G., Larsen, P., Fey, S., … Salomé pais, M. (2006). Proteome profiling of Populus euphratica Oliv. upon heat stress. Annals of Botany, 98(2), 361-377. https://doi.org/10.1093/aob/mcl106</Citation>
</Reference>
<Reference>
<Citation>Filichkin, S. A., Hamilton, M., Dharmawardhana, P. D., Singh, S. K., Sullivan, C., Ben-Hur, A., … Jaiswal, P. (2018). Abiotic stresses modulate landscape of poplar transcriptome via alternative splicing, differential intron retention, and isoform ratio switching. Frontiers in Plant Science, 9, 5. https://doi.org/10.3389/fpls.2018.00005</Citation>
</Reference>
<Reference>
<Citation>Gordon, S. P., Tseng, E., Salamov, A., Zhang, J., Meng, X., Zhao, Z., … Wang, Z. (2015). Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing. PLoS ONE, 10(7), e0132628. https://doi.org/10.1371/journal.pone.0132628</Citation>
</Reference>
<Reference>
<Citation>Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644-652. https://doi.org/10.1038/nbt.1883</Citation>
</Reference>
<Reference>
<Citation>Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., … Wortman, J. R. (2008). Automated eukaryotic gene structure annotation using evidencemodeler and the program to assemble spliced alignments. Genome Biology, 9(1), R7. https://doi.org/10.1186/gb-2008-9-1-r7</Citation>
</Reference>
<Reference>
<Citation>Hamzeh, M., & Dayanandan, S. (2004). Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast TRNT-TRNF region and nuclear rDNA. American Journal of Botany, 91(9), 1398-1408. https://doi.org/10.3732/ajb.91.9.1398</Citation>
</Reference>
<Reference>
<Citation>Harris, M. A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., … White, R. (2004). The gene ontology (GO) database and informatics resource. Nucleic Acids Research, 32, D258-D261.</Citation>
</Reference>
<Reference>
<Citation>Hou, J., Ye, N., Dong, Z. Y., Lu, M. Z., Li, L. G., & Yin, T. M. (2016). Major chromosomal rearrangements distinguish willow and poplar after the ancestral “Salicoid” genome duplication. Genome Biology and Evolution, 8(6), 1868-1875. https://doi.org/10.1093/gbe/evw127</Citation>
</Reference>
<Reference>
<Citation>Isebrands, J. G., & Richardson, J. (Eds.) (2014). Poplars and willows: Trees for society and the environment. In Poplars & Willows trees for society & the environment (pp. 571-579). Wallingford, UK: CAB International.</Citation>
</Reference>
<Reference>
<Citation>Jaillon, O., Aury, J.-M., Noel, B., Policriti, A., Clepet, C., Casagrande, A., … Jubin, C. (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449(7161), 463-467.</Citation>
</Reference>
<Reference>
<Citation>Jansson, S., & Douglas, C. J. (2007). Populus: A model system for plant biology. Annual Review of Plant Biology, 58(1), 435-458.</Citation>
</Reference>
<Reference>
<Citation>Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., … Hunter, S. (2014). InterProScan 5: Genome-scale protein function classification. Bioinformatics, 30(9), 1236-1240. https://doi.org/10.1093/bioinformatics/btu031</Citation>
</Reference>
<Reference>
<Citation>Kanehisa, M., & Goto, S. (2000). kegg: Kyoto encyclopaedia of genes and genomes. Nucleic Acids Research, 28(1), 27-30.</Citation>
</Reference>
<Reference>
<Citation>Kielbasa, S. M., Wan, R., Sato, K., Horton, P., & Frith, M. C. (2011). Adaptive seeds tame genomic sequence comparison. Genome Research, 21(3), 487-493. https://doi.org/10.1101/gr.113985.110</Citation>
</Reference>
<Reference>
<Citation>Kim, D., Langmead, B., & Salzberg, S. L. (2015). hisat: A fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357. https://doi.org/10.1038/nmeth.3317</Citation>
</Reference>
<Reference>
<Citation>Kim, Y. M., Han, Y. J., Hwang, O. J., Lee, S. S., Shin, A. Y., Kim, S. Y., & Kim, J. (2012). Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid aba-induced stomatal closure. Molecules and Cells, 33(6), 617-626. https://doi.org/10.1007/s10059-012-0080-8</Citation>
</Reference>
<Reference>
<Citation>Kong, L., Zhang, Y., Ye, Z. Q., Liu, X. Q., Zhao, S. Q., Wei, L. P., & Gao, G. (2007). CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research, 35, W345-W349. https://doi.org/10.1093/nar/gkm391</Citation>
</Reference>
<Reference>
<Citation>Korlach, J., Gedman, G., Kingan, S. B., Chin, C.-S., Howard, J. T., Audet, J.-N., … Jarvis, E. D. (2017). De novo PacBio long-read and phased avian genome assemblies correct and add to reference genes generated with intermediate and short reads. Gigascience, 6(10), 1-16. https://doi.org/10.1093/gigascience/gix085</Citation>
</Reference>
<Reference>
<Citation>Lamesch, P., Berardini, T. Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., … Karthikeyan, A. S. (2011). The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Research, 40(D1), D1202-D1210.</Citation>
</Reference>
<Reference>
<Citation>Leena, S., & Eric, R. (2014). lordec: Accurate and efficient long read error correction. Bioinformatics, 30(24), 3506-3514. https://doi.org/10.1093/bioinformatics/btu538</Citation>
</Reference>
<Reference>
<Citation>Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324</Citation>
</Reference>
<Reference>
<Citation>Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … Durbin, R. (2009). The sequence alignment/map format and samtools. Bioinformatics, 25(16), 2078-2079. https://doi.org/10.1093/bioinformatics/btp352</Citation>
</Reference>
<Reference>
<Citation>Li, L., Stoeckert, C. J., & Roos, D. S. (2003). orthomcl: Identification of ortholog groups for eukaryotic genomes. Genome Research, 13(9), 2178-2189. https://doi.org/10.1101/gr.1224503</Citation>
</Reference>
<Reference>
<Citation>Li, M. Y., Qin, C. B., Welti, R., & Wang, X. M. (2006). Double knockouts of phospholipases Dζ1 and Dζ2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiology, 140(2), 761-770.</Citation>
</Reference>
<Reference>
<Citation>Lin, Y. C., Wang, J., Delhomme, N., Schiffthaler, B., Sundström, G., Zuccolo, A., … Cossu, R. M. (2018). Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen. Proceedings of the National Academy of Sciences of the United States of America, 115(46), E10970-E10978.</Citation>
</Reference>
<Reference>
<Citation>Liu, Y. J., Wang, X. R., & Zeng, Q. Y. (2019). De novo assembly of white poplar genome and genetic diversity of white poplar population in Irtysh River basin in China. Science China Life Sciences, 62(05), 3-12. https://doi.org/10.1007/s11427-018-9455-2</Citation>
</Reference>
<Reference>
<Citation>Louwers, M., Splinter, E., Driel, R. V., Laat, W. D., & Stam, M. (2009). Studying physical chromatin interactions in plants using Chromosome Conformation Capture (3C). Nature Protocols Erecipes for Researchers, 4(8), 1216-1229. https://doi.org/10.1038/nprot.2009.113</Citation>
</Reference>
<Reference>
<Citation>Ma, J., He, X., Bai, X., Niu, Z., Duan, B., Chen, N., … Wan, D. (2016). Genome-wide survey reveals transcriptional differences underlying the contrasting trichome phenotypes of two sister desert poplars. Genes, 7(12), 111. https://doi.org/10.3390/genes7120111</Citation>
</Reference>
<Reference>
<Citation>Ma, J. C., Wan, D. S., Duan, B. B., Bai, X. T., Bai, Q. X., Chen, N. N., & Ma, T. (2019). Genome sequence and genetic transformation of a widely distributed and cultivated poplar. Plant Biotechnology Journal, 17(2), 451-460. https://doi.org/10.1111/pbi.12989</Citation>
</Reference>
<Reference>
<Citation>Ma, T., Wang, J., Zhou, G., Yue, Z., Hu, Q., Chen, Y., … Liu, J. (2013). Genomic insights into salt adaptation in a desert poplar. Nature Communications, 4, 2797. https://doi.org/10.1038/ncomms3797</Citation>
</Reference>
<Reference>
<Citation>Ma, T., Wang, K., Hu, Q., Xi, Z., Wan, D., Wang, Q., … Liu, J. (2018). Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence within a poplar species complex. Proceedings of the National Academy of Sciences, 115(2), E236-E243. https://doi.org/10.1073/pnas.1713288114</Citation>
</Reference>
<Reference>
<Citation>Ma, X. D., Ma, J. C., Fan, D., Li, C. F., Jiang, Y. Z., & Luo, K. M. (2016). Genome-wide Identification of TCP family transcription factors from Populus euphratica and their involvement in leaf shape regulation. Scientific Reports, 6, 32795. https://doi.org/10.1038/srep32795</Citation>
</Reference>
<Reference>
<Citation>Mario, S., Rasmus, S., Stephan, W., & Burkhard, M. (2004). augustus: A web server for gene finding in eukaryotes. Nucleic Acids Research, 32, 309-312. https://doi.org/10.1093/nar/gkh379</Citation>
</Reference>
<Reference>
<Citation>Mäser, P., Thomine, S., Schroeder, J. I., Ward, J. M., Hirschi, K., Sze, H., … Guerinot, M. L. (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiology, 126(4), 1646-1667. https://doi.org/10.1104/pp.126.4.1646</Citation>
</Reference>
<Reference>
<Citation>Meng, K., & Wu, Y. (2018). Footprints of divergent evolution in two Na+/H+ type antiporter gene families (NHX and SOS1) in the genus Populus. Tree Physiology, 38(6), 813-824. https://doi.org/10.1093/treephys/tpx173</Citation>
</Reference>
<Reference>
<Citation>Miele, V., Penel, S., & Duret, L. (2011). Ultra-fast sequence clustering from similarity networks with silix. BMC Bioinformatics, 12(1), 116. https://doi.org/10.1186/1471-2105-12-116</Citation>
</Reference>
<Reference>
<Citation>Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C., & Kanehisa, M. (2007). kaas: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Research, 35, W182-W185. https://doi.org/10.1093/nar/gkm321</Citation>
</Reference>
<Reference>
<Citation>Mulder, N. J., Apweiler, R., Attwood, T. K., Bairoch, A., Barrell, D., Bateman, A., … Bork, P. (2003). The interpro Database, 2003 brings increased coverage and new features. Nucleic Acids Research, 31(1), 315-318. https://doi.org/10.1093/nar/gkg046</Citation>
</Reference>
<Reference>
<Citation>Ou, S., & Jiang, N. (2017). ltr_retriever: A highly accurate and sensitive program for identification of long terminal-repeat retrotransposons. Plant Physiology, 176(2), 1410-1422. https://doi.org/10.1104/pp.17.01310</Citation>
</Reference>
<Reference>
<Citation>Pennisi, E. (2017). New technologies boost genome quality. Science, 357(6346), 10-11.</Citation>
</Reference>
<Reference>
<Citation>Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3), 290. https://doi.org/10.1038/nbt.3122</Citation>
</Reference>
<Reference>
<Citation>Polle, A., & Chen, S. (2014). On the salty side of life: Molecular, physiological and anatomical adaptation and acclimation of trees to extreme habitats. Plant Cell and Environment, 38(9), 1794-1816. https://doi.org/10.1111/pce.12440</Citation>
</Reference>
<Reference>
<Citation>Porebski, S., Bailey, L. G., & Baum, B. R. (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15(1), 8-15. https://doi.org/10.1007/BF02772108</Citation>
</Reference>
<Reference>
<Citation>Price, A. L., Jones, N. C., & Pevzner, P. A. (2005). De novo identification of repeat families in large genomes. Bioinformatics, 21, i351-i358. https://doi.org/10.1093/bioinformatics/bti1018</Citation>
</Reference>
<Reference>
<Citation>Qiu, Q. S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J. K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences, 99(12), 8436-8441. https://doi.org/10.1073/pnas.122224699</Citation>
</Reference>
<Reference>
<Citation>Qiu, Q., Ma, T., Hu, Q., Liu, B., Wu, Y., Zhou, H., … Liu, J. (2011). Genome-scale transcriptome analysis of the desert poplar, Populus euphratica. Tree Physiology, 31(4), 452-461. https://doi.org/10.1093/treephys/tpr015</Citation>
</Reference>
<Reference>
<Citation>Roach, M. J., Schmidt, S. A., & Borneman, A. R. (2018). purge haplotigs: Allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics, 19(1), 460. https://doi.org/10.1186/s12859-018-2485-7</Citation>
</Reference>
<Reference>
<Citation>Ruggiero, B., Koiwa, H., Manabe, Y., Quist, T. M., Inan, G., Saccardo, F., … Maggio, A. (2004). Uncoupling the effects of abscisic acid on plant growth and water relations. analysis of sto1/nced3, an abscisic acid-deficient but salt stress-tolerant mutant in Arabidopsis. Plant Physiology, 136(2), 3134-3147.</Citation>
</Reference>
<Reference>
<Citation>Shi, H., Ishitani, M., Kim, C., & Zhu, J. K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6896-6901. https://doi.org/10.1073/pnas.120170197</Citation>
</Reference>
<Reference>
<Citation>Simao, F. A., Waterhouse, R. M., Panagiotis, I., Kriventseva, E. V., & Zdobnov, E. M. (2015). busco: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19), 3210-3212. https://doi.org/10.1093/bioinformatics/btv351</Citation>
</Reference>
<Reference>
<Citation>Stettler, R. F. (1996). Biology of Populus and its implications for management and conservation. In R. F. Stettler, J. P. E. Heilman, & T. M. Hinckley (Eds.), Biology of & its implications for management & conservation. (pp. 539). Ottawa, ON: NRC Research Press.</Citation>
</Reference>
<Reference>
<Citation>Su, Y. T., Bai, X. T., Yang, W. L., Wang, W. W., Chen, Z. Y., Ma, J. C., & Ma, T. (2018). Single-base-resolution methylomes of Populus euphratica reveal the association between DNA methylation and salt stress. Tree Genetics and Genomes, 14(6), 86. https://doi.org/10.1007/s11295-018-1298-1</Citation>
</Reference>
<Reference>
<Citation>Sun, L., Luo, H., Bu, D., Zhao, G., Yu, K., Zhang, C., … Zhao, Y. I. (2013). Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research, 41(17), e166. https://doi.org/10.1093/nar/gkt646</Citation>
</Reference>
<Reference>
<Citation>Sylvain, F., & Michael, S. (2007). astalavista: Dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Research, 35, W297.</Citation>
</Reference>
<Reference>
<Citation>Takahashi, F., Suzuki, T., Osakabe, Y., Betsuyaku, S., Kondo, Y., Dohmae, N., … Shinozaki, K. (2018). A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 556, 235-238. https://doi.org/10.1038/s41586-018-0009-2</Citation>
</Reference>
<Reference>
<Citation>Thomas, H., Rainer, H., Jorg, S., & Frank, F. (2014). proovread: Large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics, 30(21), 3004. https://doi.org/10.1093/bioinformatics/btu392</Citation>
</Reference>
<Reference>
<Citation>Tseng, H. H. (2015). Iterative clustering of sequence reads for error correction. U.S. Patent Application, No. 14/574, 914.</Citation>
</Reference>
<Reference>
<Citation>Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., … Salamov, A. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313(5793), 1596-1604.</Citation>
</Reference>
<Reference>
<Citation>Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., … Earl, A. M. (2014). pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE, 9(11), e112963. https://doi.org/10.1371/journal.pone.0112963</Citation>
</Reference>
<Reference>
<Citation>Wan, D. S., Zhang, C. H., Luo, W. C., Li, Y. D., Zhang, X., Bai, X. T., … Li, Z. J. (2019). Transcriptomic analysis of seed germination under salt stress in two desert sister species (Populus euphratica and P. pruinosa). Frontiers in Genetics, 10, 231.</Citation>
</Reference>
<Reference>
<Citation>Wang, M., Zhang, L., Zhang, Z., Li, M., Wang, D., Zhang, X., … Olson, M. S. (2020). Phylogenomics of the genus Populus reveals extensive interspecific gene flow and balancing selection. New Phytologist, 225(3), 1370-1382.</Citation>
</Reference>
<Reference>
<Citation>Wang, Y., Tang, H., DeBarry, J. D., Tan, X., Li, J., Wang, X., … Paterson, A. H. (2012). mcscanx: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40(7), e49. https://doi.org/10.1093/nar/gkr1293</Citation>
</Reference>
<Reference>
<Citation>Wingett, S., Ewels, P., Furlan-Magaril, M., Nagano, T., Schoenfelder, S., Fraser, P., & Andrews, S. (2015). hicup: Pipeline for mapping and processing Hi-C data. F1000Research, 4, 1310.</Citation>
</Reference>
<Reference>
<Citation>Wu, T., & Watanabe, C. (2005). gmap: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21(9), 1859-1875. https://doi.org/10.1093/bioinformatics/bti310</Citation>
</Reference>
<Reference>
<Citation>Wu, Y. X., Meng, K. B., & Liang, X. H. (2017). Distinct patterns of natural selection in Na+/H+ antiporter genes in Populus euphratica and Populus pruinosa. Ecology and Evolution, 7(1), 82-91.</Citation>
</Reference>
<Reference>
<Citation>Yang, W. L., Wang, K., Zhang, J., Ma, J. C., Liu, J. Q., & Ma, T. (2017). The draft genome sequence of a desert tree Populus pruinosa. Gigascience, 6(9), 1-7. https://doi.org/10.1093/gigascience/gix075</Citation>
</Reference>
<Reference>
<Citation>Yu, L. E., Ma, J., Niu, Z., Bai, X., Lei, W., Shao, X., … Wan, D. (2017). Tissue-specific transcriptome analysis reveals multiple responses to salt stress in Populus euphratica seedlings. Genes, 8(12), 372. https://doi.org/10.3390/genes8120372</Citation>
</Reference>
<Reference>
<Citation>Zhang, X., Shen, Z., Sun, J., Yu, Y., Deng, S., Li, Z., … Chen, S. (2015). NaCl-elicited, vacuolar Ca2+ release facilitates prolonged cytosolic Ca2+ signaling in the salt response of Populus euphratica cells. Cell Calcium, 57(5-6), 348-365. https://doi.org/10.1016/j.ceca.2015.03.001</Citation>
</Reference>
<Reference>
<Citation>Zhao, X., & Hao, W. (2007). ltr_finder: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research, 35, W265-W268.</Citation>
</Reference>
<Reference>
<Citation>Zhou, R., Macaya-Sanz, D., Rodgers-Melnick, E., Carlson, C. H., Gouker, F. E., Evans, L. M., … DiFazio, S. P. (2018). Characterization of a large sex determination region in Salix purpurea L. (Salicaceae). Molecular Genetics and Genomics, 293(6), 1437-1452. https://doi.org/10.1007/s00438-018-1473-y</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
<li>Virginie-Occidentale</li>
</region>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Zhiyang" sort="Zhang, Zhiyang" uniqKey="Zhang Z" first="Zhiyang" last="Zhang">Zhiyang Zhang</name>
</noRegion>
<name sortKey="Chen, Yang" sort="Chen, Yang" uniqKey="Chen Y" first="Yang" last="Chen">Yang Chen</name>
<name sortKey="Kang, Minghui" sort="Kang, Minghui" uniqKey="Kang M" first="Minghui" last="Kang">Minghui Kang</name>
<name sortKey="Li, Mengmeng" sort="Li, Mengmeng" uniqKey="Li M" first="Mengmeng" last="Li">Mengmeng Li</name>
<name sortKey="Li, Yiling" sort="Li, Yiling" uniqKey="Li Y" first="Yiling" last="Li">Yiling Li</name>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
<name sortKey="Liu, Jianquan" sort="Liu, Jianquan" uniqKey="Liu J" first="Jianquan" last="Liu">Jianquan Liu</name>
<name sortKey="Ma, Tao" sort="Ma, Tao" uniqKey="Ma T" first="Tao" last="Ma">Tao Ma</name>
<name sortKey="Ma, Xinzhi" sort="Ma, Xinzhi" uniqKey="Ma X" first="Xinzhi" last="Ma">Xinzhi Ma</name>
<name sortKey="Wan, Dongshi" sort="Wan, Dongshi" uniqKey="Wan D" first="Dongshi" last="Wan">Dongshi Wan</name>
<name sortKey="Wang, Deyan" sort="Wang, Deyan" uniqKey="Wang D" first="Deyan" last="Wang">Deyan Wang</name>
<name sortKey="Wu, Haolin" sort="Wu, Haolin" uniqKey="Wu H" first="Haolin" last="Wu">Haolin Wu</name>
<name sortKey="Yang, Yongzhi" sort="Yang, Yongzhi" uniqKey="Yang Y" first="Yongzhi" last="Yang">Yongzhi Yang</name>
<name sortKey="Zhang, Junlin" sort="Zhang, Junlin" uniqKey="Zhang J" first="Junlin" last="Zhang">Junlin Zhang</name>
</country>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Olson, Matthew S" sort="Olson, Matthew S" uniqKey="Olson M" first="Matthew S" last="Olson">Matthew S. Olson</name>
</region>
<name sortKey="Difazio, Stephen P" sort="Difazio, Stephen P" uniqKey="Difazio S" first="Stephen P" last="Difazio">Stephen P. Difazio</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000325 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000325 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32034885
   |texte=   Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32034885" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020